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Abstract. We present a mathematical model of word sense frequenaybdisons,
and use word distributions to set parameters. The modeliesiphat the expected
dominance of the commonest sense rises with the number péi€anstances, and
that, particularly for commoner words, highly uneven dlsttions are to be expected
much more often than even ones. The model is compared withntited evidence
available from SEMCOR. The implications for WSD and its enzion are discussed.

1 Introduction

Given a word with multiple senses, how might we expect thgdescy of the commonest
sense to relate to the frequency of the other senses? Thisisgdmportant for Word Sense
Disambiguation (WSD): if the commonest sense is commone$ath accounting for, say,
90% of the corpus instances for the word, it becomes hardiféngelligent’ WSD program
to perform better than a dumb one that just always choosesthenonest sense, as 90% is
hard to beat.

These issues were first explored by Gale, Church and Yaroiwsl§92 [5], who identify
what they call the ‘lower bound’ for respectable perfornmnta WSD system as the score
that a dummy system achieves if it simply always chose thentonest sense. The score
for this system will be the proportion of the data accountadoy the commonest sense, as
in the question of our title. Looking at the very small dataseilable to them, they found
an average figure of 70%. Their work has remained since asud sitting over WSD: the
lower bound issue (and a further set of concerns regardieguiper bound) continue to
cast a shadow over much WSD activity and its evaluafi@ri49, Yyhile resources — notably
SEMCOR [12] — are now substantially larger and more systienttaan they were in 1992,
they are still too small to give a general answer to the titleggion, and it remains open. In
the absence of adequate resources for answering the quésgotly, this paper aims to give
a new perspective on the issue indirectly through providingathematical model, and using
a word frequency distribution to model a word-sense one.

After presenting and evaluating the model, we continue ikeudsion above covering
the difficulties that the lower bound issue has created imSENSEVAﬂ exercises and the
relation between commonest sense and domain.

1 http://www.senseval.org
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2 The Model

2.1 Assumptions

Firstly, we note that words have a Zipfian or power-law dsttion [16]. As a first
approximation, the product of frequency and rank is corstan

Next we assume no special relationship between differeminings of the same word.
We assume any instance of a word can be assigned to one andrenkense. We assume
polysemy is accidental and random, and thatamay polysemous word can be modeled just
as a set oh independent senses. While these assumptions are patatriye 411.6.8] and
indeed polysemy (as distinct from homonymy) is defined asesshearing relations to each
other, the assumption allows us to set up a mathematical Inaddeh can in due course be
evaluated.

Then, in the absence of much empirical evidence about thahdigon of the whole
population of words senses, we assume their distributi@s ir words. We expect word
senses to be power-law-distributed. We assume that thdat@puof word senses will show
no interesting distributional differences to the popuatof words. (There will just be rather
more of them.) Again, we make no claim that the assumptiorués its role is to enable the
modelling.

In the formal part of the paper, we ignore senses with frequerro in a given corpus,
so a word with three senses of which one has no occurrencesaied as a word with two
senses.

2.2 Simple Zipfian Model

Now, consider a two-way polysemous word of frequenayith senses1 ands2. What can
we say about the relative frequenciesafands2?

The frequencies g1 ands2 sum ton: thatis f (s1) + f (s2) = n. For anym from 1 to
n — 1, we can have

f(s1)=m f(s2)=n—-m 1)

Let us consider two cases: the case whare= 1 and the case whera = (n + 1)/2.
(We first address the case wherés odd, as there is a special case wheris even.) The
question is, ifsl ands2 are any senses, what should our expectations be aboutatieae
frequencies of the commoner and less common sense?

Let us call the complete population of word senses in a cogpéstwo-sense word can
then be created by randomly selecting any one of thgsems, and then randomly selecting
another. There arg(q — 1)/2 possible pairs, so the complete population of 2-sense-wor
possibilities hagj(q — 1)/2 members. We now investigate the subset of tligse— 1)/2
items where the joint frequencyiis First, we work out the size of the subset. Then, for each
member of the subset, we calculate the proportiama¢counted for by the commoner sense;
the mean value for this proportion is then the expected Valuthe proportion of instances
of a two-way-ambiguous word of frequennyto be accounted for by the commoner sense.

If word senses follow Zipf's Law in its simplest form, the jitect of a sense’s frequency
and its rank is constant. For lower-frequency items, thebenmof items having frequency
will be k/(x(X + 1)) wherek is a constant. (For the derivation, sEk [2, pp. 13-17].)
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If m = 1, there will bek/(1* (1+ 1)) = k/2 possible word senses tt&it might be. In
that cases2 has frequencp — 1, so there ar%ﬁ senses tha2 might be. If we look at all
the possible combinations wheme = 1, we have any of thk/2 s1s combined with any of
thek/n(n — 1) s2s, so the total is the productkf2 andk/n(n — 1), that is,k?/2n(n — 1).

If m= (n+ 1)/2, by similar logic,s1 may be any of

k 4K
(n+1)/2((n+1)/2) + 1) - n+DH(n+3)

senses ans2 may be any of

)

k &
(N-1/2((n-1/2+1  (M—1(+1)

senses. The total number of possibilities forrafrequency word where the most frequent
sense accounts f@n + 1)/2 of the instances is the product of these two:

®)

16k?
(N+12(n—1)(n+3)

(4)

So what is the relative likelihood of s1 and s2 being as nepossible to equally frequent, as
against the skewed case where all but one of the data instheéeng to s17? It is the ratio of
these two number&?/2n(n—1) and 1&2/((n+1)2(n—1)(n+3)) or 3N : (N+1)2(n+3).

If we take a random sample of words with frequency 1081 101), then, on these
assumptions, the ratio is 3232 to 202 104 or approximately 1:335. A 100:1 split is 335
times as likely as a 51:50 split.

2.3 Models using Brown and BNC word frequencies

The simple Zipfian distribution does not model word freques@ccurately, so it may be
objected that it is unlikely to accurately model word sensgdencies. Improvements on
the simple Zipfian model have been explored at length in thedliure. ([2] is a book-length
discussion of this and related questions; §eé [13] for aly edtique and the development
of the generalised power-law model.) All higher-accura@dels are parameterised, so an
actual word frequency distribution is required for paragnetetting. Once we select an actual
word frequency distribution, we may as well use it more diyeto model word sense
frequencies, and there is no longer any need to use Zipfiamgd®ons.

In the remainder of the paper, we use word frequency didtabs from the Brown
corpus [I0] and the British National Corpus (BNC) [3] as twadals for word sense
frequencies. The frequencies were smoothed to give a moeadecreasing functich.
Tabld1 presents actual and smoothed values for a sampbsgoiency classes for both Brown
and BNC.

2 The value of each data point was recomputed using a lineaosipmation based on data points
surrounding the data point being recomputadwas set to one seventh (rounded down) of the
frequency class, so for the frequency class of words ocoy®3 times, the smoothed value for
the number of words occurring 63 times was calculated as orik of the sum of the number of
words occurring 59, 60, 61,.. ., 66 or 67 times. The paranvedsrset to seven as this was the lowest
value that gave a monotone decreasing function.
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Table 1.Brown and BNC counts for a range of frequencies, raw and dmecot

Frequency Number of words having that frequency
Brown BNC

Raw Smoothed Raw  Smoothed

1| 16278 16278.00 486507 486507.00

2 6097 6097.00| 123633 123633.00

3 3543 3543.00] 58821 58821.00

4 2249 2249.00] 36289 36289.00

50 43 43.13 742 700.75

51 47 41.86 688 679.45

100 10 11.03 262 244.37

To replicate the calculation of the relative likelihood 01400 as against a 50:51 split
using smoothed Brown data, we note that the number of ptiisthbifor a 100:1 split
is 16278 x 11.03 = 179 546 whereas the number of possibilities for a 50:51 split is
43.13 x 41.86 = 1805.

On this model, the highly skewed split is 99 times likelier.

2.4 Generalised model

We now generalize the maths to take into account all posg#less ofm fromn/2ton —1,
and thereby arrive at a Maximum Likelihood Estimate of theportion of the data accounted
for by the commonest sense, for a two-sense word of frequency

For each value aofn, the number of possibilities is

V(m) x V(n—m) ()

whereV (m) is the number of items having frequernty and can in principle be drawn from
a theoretical or an empirical distribution.

To find the average, for each of these possibilities, we needitl on the commonest-
sense proportion that this value of implies: m/n. We also need to accumulate the total
number of possibilities that give rise to an overall frequewnf n for the word, as the
denominator. Thus we have, whearés odd,

Emz?njrll)/zV(m) x V(n—m) x m/n ©

zgjg}];ll) 2V (M) x V(n—m)

Wheren is even and1 ands2 are equally frequent, we cannot take the squaké(@f/2)
to give the number of possibilities as that would be douldenting: the number of pairs in
a setoft items ist(t — 1)/2, so the number of pairs here is

_ V(n/2) x V(n/2) — 1

2 @)

e(n)
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For evenn, the expected value for the proportion accounted for by thetrmommon
sense is

e(n)/2 + zm;”n;lz) 2V (M) x V(n—m) xm/n

e(n) + En'?j(”,;jz) 2V (M) x V(n —m)

®)

Using these formulae and the Brown and BNC distributionsawiwe at the MLE's for
the percentage of instances accounted for by the commaerese sfor various values of
as shown in Tablg 2.

The analysis is also extended to the 3-sense-word case adesénse-word case.

Table 2. MLEs for most common sense using Brown and BNC models

n | 2-sense words| 3-sense words| 4-sense words
Brown | BNC | Brown | BNC | Brown | BNC
10 | 80.58| 83.21| 57.34| 58.90| 40.00| 40.00
25| 85.64| 88.94| 70.96| 74.21| 56.70| 58.16
50 | 89.99| 92.33| 79.16| 81.82| 67.15| 69.05
100 | 92.09| 94.62| 83.45| 87.03| 73.62| 77.06
200 | 94.40| 96.17| 88.06| 90.71| 80.25| 83.08
500 | 97.98| 97.63| 95.51| 94.19| 91.93| 89.10

3 Empirical Word Sense Frequency Distributions

The sense-tagged SEMCOR database provides limited ewmlpéwidence of word sense
frequency distributions.

There were 55 words with two senses occurring in SEMCOR, fbicl the word
frequency was 18.The average percentage accounted for by the commonest getisie
dataset, is 73.64%.

There were 41 3-sense words with frequency 10, and the averfathe proportions
accounted for by the commoner sense, across those 41 item§4163%.

In the ‘class’ rows in TablEl3 we have gathered together wamlsss a small range of
frequencies in order to give better averages. We have daséntla way that has kept the
average frequency, for the class, at the value (10, 25, 3),th@t supports comparison with
Brown and BNC figures from Tabld 2; BNC figures for the equimaleategory are copied
acros@ This means that the frequency ranges are slightly vari#ged6 items in the 2-sense
25 class had frequencies between 20 and 31, whereas theéfs8-words in the 25-class
had frequencies between 20 and 30.

While most of the BNC figures are higher, the two sets of figloeth show the same
tendency for the commonest-sense proportion to steadifyedse with the level of polysemy
and to steadily increase with the frequency.

3 The ‘word’ here is lemmatised, so is equivalent to a dictigrizeadword. It covers only one word
class, eg, noun or verb, soash (noun) anctrash (verb) are treated as distinct items.
4 The category “4—6 senses” is clearly not directly comparatith the 4-sense case from Table 2.

5
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Table 3.Proportion for commonest sense from SEMCOR, with BNC figfmesomparison.
The # column gives the number of words in SEMCOR that the ddtased on: there were 55
words in SEMCOR which had a total SEMCOR frequency of 10 anevfuch two WordNet
senses had non-zero frequencies. The % column states tfageaygoportion accounted for
by the commonest sense, across these # items.

n 2-sense wds 3-sense wds 4-6-sense wds
# % bnc | # % bnc # % bnc

10 | 55| 73.64| 83.21| 41 | 64.63 | 58.90| 23| 44.35| 40.00
25-class| 96 | 79.79 | 88.94| 70 | 68.10 | 74.21 | 103 | 53.41 | 58.16
50-class| 45 | 83.08 | 92.33| 59 | 72.35| 81.82| 88 | 54.93 | 69.05
100-class| 16 | 79.41 | 94.62 | 24 | 77.76 | 87.03| 20 | 73.04| 77.06

4 Discussion

We do not have empirical figures for large valuespbwing to the size of SEMCOR, but
the fit between SEMCOR and BNC figures leads us to believe tbhad Wwequencies and

word sense frequencies have similar distributions and wea&xhe skew to become more
pronounced for higher values of as in Tabl€R.

The highly skewed split is to be expected much more often teaan’ one. One
possible reason for the theoretical figures being highen thea SEMCOR figures lies in
the dictionary-writing process. Where a lexicographemisfronted with a large quantity of
corpus data for a word, then, even if all of the examples ateérsame area of meaning, it
becomes tempting to allocate the word more column inchesraord meanings.

Consider the wordgenerous and pike. Generous is a common word with meanings
ranging from generous people (who give lots of money) to gare helpings (large) to
generous dispositions (inclinations to be kind and hejpfthere are no sharp edges between
the meanings, and they vary across a range. Given the fregudnthe word, it seems
appropriate to allocate more than one meaning, as do aleabtige of dictionaries inspected.

Pike is less common (190 BNC occurrences, as against 1144) buist be assigned
distinct meanings for fish and weapon (and possibly also fortiérn English hill, and
turnpike, depending on dictionary size), however rare ahyhese meanings might be,
since they cannot be assimilated as minor varidPite-style polysemy, with unassimilable
meanings, is the kind that is modelled in this paper. Whezeetisgenerous-style ambiguity,
one might expect less skewed distributions, since thedgxapher will only create a distinct
sense for the ‘generous disposition’ reading if it is faidgmmon; if the lexicographer
encounters only one or two instances, they will not. Polysand frequency are entangﬁd.
We should not be surprised to find actual data less skewedtligamodel predicts, though
we may also note thajenerous-style ambiguity is probably much less important for NLP
system accuracy thapike-style ambiguity, and it is plausible that NLP-critical aigpity is
more skewed, and more like our model, than dictionary-baseliguity as exemplified in
SEMCOR.

5 The nature of this entanglement is explored furtheEln [7].
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4.1 The more data you have, the more senses you find

It may seem surprising that the ‘commonest proportion’egwwithn, the frequency of the
word. It may seem to suggest that the ratio between an indwiglord’s senses varies as
corpus size increases, but it does not. The proportion d@sabgcause, in additional corpus
data, we find additional senses for words which previouslyewaonosemous, or which
change from being 2-sense words to 3-sense words, or 3 taultivaly, the proportion
increases withn simply because the ratio betwern- 1 and 1 increases with, and, since
there are so many singletons, this ratio dominates thestitati

An early finding from corpus-based NLP was that the more datalgok at, the more
word types you find, without en@[L5]. This also applies to niegs. As lexicographers also
discover, the more data we study, the more meanings we @scov

4.2 WSD evaluation

For the two SENSEVAL exercises, the title question has caatgd the evaluation in several
ways.

Is commonest-sense information available? The lower-bound system which always
chooses the commonest sense can only be implemented ifribisrkwhat the commonest
sense is. For a WSD system that does not know, the baselinaristh beat: for the
SENSEVAL-2 English lexical sample task, the highest-saps8ystem which did not have
access to that information scored 40% against a commoaase®f 48%d[4, Table 3, p 285].
For most languages and text types, such a resource is ntdtdegialthough the ordering of
senses in dictionaries generally follows a lexicograpghp€érception of importance, which
is correlated with frequency, so dictionaries can providbrect evidence of the commonest
sense). The SENSEVAL organisers responded to this situbtiaividing the systems to be
evaluated into two sets: those that used a training res¢wiieh gave word sense frequency
counts, amongst other things) and those that did not. Bsitstare important: the resource-
rich one is relevant for high-salience applications like BVfer general English, and the
resource-poor one because, in the general case, trairsiogroes are not available.

Lexical sample The two options for evaluation explored in the SENSEVAL eiggs were
the lexical-sample route and the all-words route.

For the lexical sample, first, a set of words is selected;,tlaeget of contextualised
instances of each of these words is selected. Whoever magss selections implicitly sets
the commonest proportion. Itis likely that they will makéesgions which are biased towards
‘even’ splits. A word with 100 test instances, of which 99fsld the same sense, would not
seem a good choice of a word for SENSEVAL, whereas a word w30 split would seem
an entirely suitable candidate, even though, as we have teeformer is far likelieh

6 An attempt was made by the author to address this issue whergarized English SENSEVAL-1,
by including in the lexical sample one worainazing, for which the sense inventory offered only
one sense. It turned out that all instances were assignéisteense — there were no unassignable
instances — and everyone except the author was rather guazte why the word had been included
in the dataset.
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All-words In the all-words approach, where all the content words inxd, ter set of
sentences, are used for evaluation, we encounter a diffpreblem. As budgets do not
support enormous sense-tagging exercises, for most woallsjery many instances will
be tagged. For most core vocabulary itemsiill be low. SEMCOR contains only 220 words
with frequency greater than 50. So we will not encounter treblem of the commonest
proportion averaging over 90%, simply because sampleasmall.

In neither case does the evaluation scenario reflect thasoeasf an NLP system in use,
with large throughputs of text.

The paper implies that the case that WSD can outperform tbeliba has not properly
been made, with results from SENSEVAL being biased and oty addressing questions
of lexical sample selection, or scale.

4.3 ldentifying the commonest sense in a domain/corpus

The model suggests that the baseline performs remarkablyBue the baseline needs to
know what the commonest sense is. A system that concentratdsntifying the commonest
sense could well outperform one that concentrates on digamation.

The observation has been widely used in commercial Machiaeslation (MT). While
WSD (called Lexical Disambiguation in the MT community) isentral problem for MT, itis
sidestepped, by using different lexicons for different @ims, more often than it is addressed.
While this approach may have been born of pragmatism ratlaertheory, the model in this
paper tends to support it. If an NLP application is operatiitgin a domain, it is cleverer to
customise the lexicon for the domain (thereby reducing gmity) than to attempt to resolve
ambiguity.

Within the NLP WSD community, similar effects have been otsd. Gale et al[]5] note
in a footnote

Itis common to use very small contexts (e.g., 5-words) basetie observation that
people seem to be able to disambiguate word-senses basdydiitieecontext. We
have taken a different approach. Since we have been ablaltageful information
out to 100 words (and measurable information out to 10,00@s)o we feel we
might as well make use of much larger contexts.

In looking at a very large window, they approximate an apphowhich identifies a
domain. Recent work by McCarthy et dl. [14] has taken thitegy a step further, exploring
in detail how different word senses are commonest in diffedomains, and how NLP
application performance can be improved by using this métdion.

The structure of the SENSEVAL exercise, for SENSEVALs 1, & @anhas not allowed
systems to take this approach. At most a few sentences ofxddmive been provided for
each test example. There has not been any possibility ofju&ry large contexts, and the
opportunities for finding, for example, sets of ducumentrisiy a domain with the sample
instance (as in topic vector methofk [1]) have scarcely pessible.

It is a commonplace that the words (and senses) we use depeth@ gorts of things
we are talking about, and that different word senses apptiifiarent domains. The model
presented in this paper suggests that finding which senswofchis commonest (in a given
corpus or subcorpus or document set) may reap great reveardshat future SENSEVALS
should find a way of crediting systems that take this approach
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