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Abstract. We present a mathematical model of word sense frequency distributions,
and use word distributions to set parameters. The model implies that the expected
dominance of the commonest sense rises with the number of corpus instances, and
that, particularly for commoner words, highly uneven distributions are to be expected
much more often than even ones. The model is compared with thelimited evidence
available from SEMCOR. The implications for WSD and its evaluation are discussed.

1 Introduction

Given a word with multiple senses, how might we expect the frequency of the commonest
sense to relate to the frequency of the other senses? This topic is important for Word Sense
Disambiguation (WSD): if the commonest sense is commonest by far, accounting for, say,
90% of the corpus instances for the word, it becomes hard for an ‘intelligent’ WSD program
to perform better than a dumb one that just always chooses thecommonest sense, as 90% is
hard to beat.

These issues were first explored by Gale, Church and Yarowskyin 1992 [5], who identify
what they call the ‘lower bound’ for respectable performance of a WSD system as the score
that a dummy system achieves if it simply always chose the commonest sense. The score
for this system will be the proportion of the data accounted for by the commonest sense, as
in the question of our title. Looking at the very small dataset available to them, they found
an average figure of 70%. Their work has remained since as a cloud sitting over WSD: the
lower bound issue (and a further set of concerns regarding the upper bound) continue to
cast a shadow over much WSD activity and its evaluation [9,7,4]. While resources – notably
SEMCOR [12] – are now substantially larger and more systematic than they were in 1992,
they are still too small to give a general answer to the title question, and it remains open. In
the absence of adequate resources for answering the question directly, this paper aims to give
a new perspective on the issue indirectly through providinga mathematical model, and using
a word frequency distribution to model a word-sense one.

After presenting and evaluating the model, we continue the discussion above covering
the difficulties that the lower bound issue has created for the SENSEVAL1 exercises and the
relation between commonest sense and domain.

1 http://www.senseval.org
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2 The Model

2.1 Assumptions

Firstly, we note that words have a Zipfian or power-law distribution [16]. As a first
approximation, the product of frequency and rank is constant.

Next we assume no special relationship between different meanings of the same word.
We assume any instance of a word can be assigned to one and onlyone sense. We assume
polysemy is accidental and random, and that ann-way polysemous word can be modeled just
as a set ofn independent senses. While these assumptions are patently untrue [11,6,8] and
indeed polysemy (as distinct from homonymy) is defined as senses bearing relations to each
other, the assumption allows us to set up a mathematical model which can in due course be
evaluated.

Then, in the absence of much empirical evidence about the distribution of the whole
population of words senses, we assume their distribution isas for words. We expect word
senses to be power-law-distributed. We assume that the population of word senses will show
no interesting distributional differences to the population of words. (There will just be rather
more of them.) Again, we make no claim that the assumption is true: its role is to enable the
modelling.

In the formal part of the paper, we ignore senses with frequency zero in a given corpus,
so a word with three senses of which one has no occurrences is treated as a word with two
senses.

2.2 Simple Zipfian Model

Now, consider a two-way polysemous word of frequencyn with sensess1 ands2. What can
we say about the relative frequencies ofs1 ands2?

The frequencies ofs1 ands2 sum ton: that is f (s1) + f (s2) = n. For anym from 1 to
n − 1, we can have

f (s1) = m f (s2) = n − m (1)

Let us consider two cases: the case wherem = 1 and the case wherem = (n + 1)/2.
(We first address the case wheren is odd, as there is a special case wheren is even.) The
question is, ifs1 ands2 are any senses, what should our expectations be about the relative
frequencies of the commoner and less common sense?

Let us call the complete population of word senses in a corpusq. A two-sense word can
then be created by randomly selecting any one of theseq items, and then randomly selecting
another. There areq(q − 1)/2 possible pairs, so the complete population of 2-sense-word
possibilities hasq(q − 1)/2 members. We now investigate the subset of theseq(q − 1)/2
items where the joint frequency isn. First, we work out the size of the subset. Then, for each
member of the subset, we calculate the proportion ofn accounted for by the commoner sense;
the mean value for this proportion is then the expected valuefor the proportion of instances
of a two-way-ambiguous word of frequencyn to be accounted for by the commoner sense.

If word senses follow Zipf’s Law in its simplest form, the product of a sense’s frequency
and its rank is constant. For lower-frequency items, the number of items having frequencyx
will be k/(x(x + 1)) wherek is a constant. (For the derivation, see [2, pp. 13–17].)
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If m = 1, there will bek/(1∗ (1+ 1)) = k/2 possible word senses thats1 might be. In
that case,s2 has frequencyn−1, so there are k

n(n−1) senses thats2 might be. If we look at all
the possible combinations wherem = 1, we have any of thek/2 s1s combined with any of
thek/n(n − 1) s2s, so the total is the product ofk/2 andk/n(n − 1), that is,k2/2n(n − 1).

If m = (n + 1)/2, by similar logic,s1 may be any of

k

((n + 1)/2)((n + 1)/2) + 1)
=

4k

(n + 1)(n + 3)
(2)

senses ands2 may be any of

k

((n − 1)/2)((n − 1)/2) + 1)
=

4k

(n − 1)(n + 1)
(3)

senses. The total number of possibilities for ann-frequency word where the most frequent
sense accounts for(n + 1)/2 of the instances is the product of these two:

16k2

(n + 1)2(n − 1)(n + 3)
(4)

So what is the relative likelihood of s1 and s2 being as near aspossible to equally frequent, as
against the skewed case where all but one of the data instances belong to s1? It is the ratio of
these two numbers:k2/2n(n−1) and 16k2/((n+1)2(n−1)(n+3)) or 32n : (n+1)2(n+3).

If we take a random sample of words with frequency 101 (n = 101), then, on these
assumptions, the ratio is 3232 to 1022 × 104 or approximately 1:335. A 100:1 split is 335
times as likely as a 51:50 split.

2.3 Models using Brown and BNC word frequencies

The simple Zipfian distribution does not model word frequencies accurately, so it may be
objected that it is unlikely to accurately model word sense frequencies. Improvements on
the simple Zipfian model have been explored at length in the literature. ([2] is a book-length
discussion of this and related questions; see [13] for an early critique and the development
of the generalised power-law model.) All higher-accuracy models are parameterised, so an
actual word frequency distribution is required for parameter-setting. Once we select an actual
word frequency distribution, we may as well use it more directly to model word sense
frequencies, and there is no longer any need to use Zipfian assumptions.

In the remainder of the paper, we use word frequency distributions from the Brown
corpus [10] and the British National Corpus (BNC) [3] as two models for word sense
frequencies. The frequencies were smoothed to give a monotone decreasing function.2

Table 1 presents actual and smoothed values for a sample of frequency classes for both Brown
and BNC.

2 The value of each data point was recomputed using a linear approximation based onn data points
surrounding the data point being recomputed.n was set to one seventh (rounded down) of the
frequency class, so for the frequency class of words occurring 63 times, the smoothed value for
the number of words occurring 63 times was calculated as one ninth of the sum of the number of
words occurring 59, 60, 61,. . . , 66 or 67 times. The parameterwas set to seven as this was the lowest
value that gave a monotone decreasing function.
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Table 1.Brown and BNC counts for a range of frequencies, raw and smoothed

Frequency Number of words having that frequency
Brown BNC

Raw Smoothed Raw Smoothed
1 16278 16278.00 486507 486507.00
2 6097 6097.00 123633 123633.00
3 3543 3543.00 58821 58821.00
4 2249 2249.00 36289 36289.00
.
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.

.

.

.

.

.

.

.

50 43 43.13 742 700.75
51 47 41.86 688 679.45
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

100 10 11.03 262 244.37
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

To replicate the calculation of the relative likelihood of a1:100 as against a 50:51 split
using smoothed Brown data, we note that the number of possibilities for a 100:1 split
is 16278× 11.03 = 179, 546 whereas the number of possibilities for a 50:51 split is
43.13× 41.86 = 1805.

On this model, the highly skewed split is 99 times likelier.

2.4 Generalised model

We now generalize the maths to take into account all possiblevalues ofm from n/2 ton −1,
and thereby arrive at a Maximum Likelihood Estimate of the proportion of the data accounted
for by the commonest sense, for a two-sense word of frequencyn.

For each value ofm, the number of possibilities is

V (m) × V (n − m) (5)

whereV (m) is the number of items having frequencym, and can in principle be drawn from
a theoretical or an empirical distribution.

To find the average, for each of these possibilities, we need to add on the commonest-
sense proportion that this value ofm implies: m/n. We also need to accumulate the total
number of possibilities that give rise to an overall frequency of n for the word, as the
denominator. Thus we have, wheren is odd,

6m=n−1
m=(n+1)/2V (m) × V (n − m) × m/n

6m=n−1
m=(n+1)/2V (m) × V (n − m)

(6)

Wheren is even ands1 ands2 are equally frequent, we cannot take the square ofV (n/2)
to give the number of possibilities as that would be double-counting: the number of pairs in
a set oft items ist (t − 1)/2, so the number of pairs here is

e(n) =
V (n/2) × V (n/2) − 1

2
(7)
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For evenn, the expected value for the proportion accounted for by the most common
sense is

e(n)/2 + 6m=n−1
m=(n+2)/2V (m) × V (n − m) × m/n

e(n) + 6m=n−1
m=(n+2)/2V (m) × V (n − m)

(8)

Using these formulae and the Brown and BNC distributions, wearrive at the MLE’s for
the percentage of instances accounted for by the commonest sense, for various values ofn,
as shown in Table 2.

The analysis is also extended to the 3-sense-word case and the 4-sense-word case.

Table 2.MLEs for most common sense using Brown and BNC models

n 2-sense words 3-sense words 4-sense words
Brown BNC Brown BNC Brown BNC

10 80.58 83.21 57.34 58.90 40.00 40.00
25 85.64 88.94 70.96 74.21 56.70 58.16
50 89.99 92.33 79.16 81.82 67.15 69.05

100 92.09 94.62 83.45 87.03 73.62 77.06
200 94.40 96.17 88.06 90.71 80.25 83.08
500 97.98 97.63 95.51 94.19 91.93 89.10

3 Empirical Word Sense Frequency Distributions

The sense-tagged SEMCOR database provides limited empirical evidence of word sense
frequency distributions.

There were 55 words with two senses occurring in SEMCOR, for which the word
frequency was 10.3 The average percentage accounted for by the commonest sense, in this
dataset, is 73.64%.

There were 41 3-sense words with frequency 10, and the average of the proportions
accounted for by the commoner sense, across those 41 items, was 64.63%.

In the ‘class’ rows in Table 3 we have gathered together wordsacross a small range of
frequencies in order to give better averages. We have done this in a way that has kept the
average frequency, for the class, at the value (10, 25, 50, 100) that supports comparison with
Brown and BNC figures from Table 2; BNC figures for the equivalent category are copied
across.4 This means that the frequency ranges are slightly variable:the 96 items in the 2-sense
25 class had frequencies between 20 and 31, whereas the 70 3-sense words in the 25-class
had frequencies between 20 and 30.

While most of the BNC figures are higher, the two sets of figuresboth show the same
tendency for the commonest-sense proportion to steadily decrease with the level of polysemy
and to steadily increase with the frequency.

3 The ‘word’ here is lemmatised, so is equivalent to a dictionary headword. It covers only one word
class, eg, noun or verb, socrash (noun) andcrash (verb) are treated as distinct items.

4 The category “4–6 senses” is clearly not directly comparable with the 4-sense case from Table 2.
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Table 3.Proportion for commonest sense from SEMCOR, with BNC figuresfor comparison.
The # column gives the number of words in SEMCOR that the data is based on: there were 55
words in SEMCOR which had a total SEMCOR frequency of 10 and for which two WordNet
senses had non-zero frequencies. The % column states the average proportion accounted for
by the commonest sense, across these # items.

n 2-sense wds 3-sense wds 4-6-sense wds
# % bnc # % bnc # % bnc

10 55 73.64 83.21 41 64.63 58.90 23 44.35 40.00
25-class 96 79.79 88.94 70 68.10 74.21 103 53.41 58.16
50-class 45 83.08 92.33 59 72.35 81.82 88 54.93 69.05

100-class 16 79.41 94.62 24 77.76 87.03 20 73.04 77.06

4 Discussion

We do not have empirical figures for large values ofn, owing to the size of SEMCOR, but
the fit between SEMCOR and BNC figures leads us to believe that word frequencies and
word sense frequencies have similar distributions and we expect the skew to become more
pronounced for higher values ofn, as in Table 2.

The highly skewed split is to be expected much more often than‘even’ one. One
possible reason for the theoretical figures being higher than the SEMCOR figures lies in
the dictionary-writing process. Where a lexicographer is confronted with a large quantity of
corpus data for a word, then, even if all of the examples are inthe same area of meaning, it
becomes tempting to allocate the word more column inches andmore meanings.

Consider the wordsgenerous and pike. Generous is a common word with meanings
ranging from generous people (who give lots of money) to generous helpings (large) to
generous dispositions (inclinations to be kind and helpful). There are no sharp edges between
the meanings, and they vary across a range. Given the frequency of the word, it seems
appropriate to allocate more than one meaning, as do all of the range of dictionaries inspected.

Pike is less common (190 BNC occurrences, as against 1144) but it must be assigned
distinct meanings for fish and weapon (and possibly also for Northern English hill, and
turnpike, depending on dictionary size), however rare any of these meanings might be,
since they cannot be assimilated as minor variants.Pike-style polysemy, with unassimilable
meanings, is the kind that is modelled in this paper. Where there isgenerous-style ambiguity,
one might expect less skewed distributions, since the lexicographer will only create a distinct
sense for the ‘generous disposition’ reading if it is fairlycommon; if the lexicographer
encounters only one or two instances, they will not. Polysemy and frequency are entangled.5

We should not be surprised to find actual data less skewed thanthe model predicts, though
we may also note thatgenerous-style ambiguity is probably much less important for NLP
system accuracy thanpike-style ambiguity, and it is plausible that NLP-critical ambiguity is
more skewed, and more like our model, than dictionary-basedambiguity as exemplified in
SEMCOR.

5 The nature of this entanglement is explored further in [7].
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4.1 The more data you have, the more senses you find

It may seem surprising that the ‘commonest proportion’ varies withn, the frequency of the
word. It may seem to suggest that the ratio between an individual word’s senses varies as
corpus size increases, but it does not. The proportion changes because, in additional corpus
data, we find additional senses for words which previously were monosemous, or which
change from being 2-sense words to 3-sense words, or 3 to 4. Intuitively, the proportion
increases withn simply because the ratio betweenn − 1 and 1 increases withn, and, since
there are so many singletons, this ratio dominates the statistic.

An early finding from corpus-based NLP was that the more data you look at, the more
word types you find, without end [15]. This also applies to meanings. As lexicographers also
discover, the more data we study, the more meanings we discover.

4.2 WSD evaluation

For the two SENSEVAL exercises, the title question has complicated the evaluation in several
ways.

Is commonest-sense information available?The lower-bound system which always
chooses the commonest sense can only be implemented if it is known what the commonest
sense is. For a WSD system that does not know, the baseline is hard to beat: for the
SENSEVAL-2 English lexical sample task, the highest-scoring system which did not have
access to that information scored 40% against a commonest-sense of 48% [4, Table 3, p 285].
For most languages and text types, such a resource is not available (although the ordering of
senses in dictionaries generally follows a lexicographer’s perception of importance, which
is correlated with frequency, so dictionaries can provide indirect evidence of the commonest
sense). The SENSEVAL organisers responded to this situation by dividing the systems to be
evaluated into two sets: those that used a training resource(which gave word sense frequency
counts, amongst other things) and those that did not. Both tasks are important: the resource-
rich one is relevant for high-salience applications like WSD for general English, and the
resource-poor one because, in the general case, training resources are not available.

Lexical sample The two options for evaluation explored in the SENSEVAL exercises were
the lexical-sample route and the all-words route.

For the lexical sample, first, a set of words is selected; then, a set of contextualised
instances of each of these words is selected. Whoever makes these selections implicitly sets
the commonest proportion. It is likely that they will make selections which are biased towards
‘even’ splits. A word with 100 test instances, of which 99 allhad the same sense, would not
seem a good choice of a word for SENSEVAL, whereas a word with a50:50 split would seem
an entirely suitable candidate, even though, as we have seen, the former is far likelier.6

6 An attempt was made by the author to address this issue when heorganized English SENSEVAL-1,
by including in the lexical sample one word,amazing, for which the sense inventory offered only
one sense. It turned out that all instances were assigned to this sense – there were no unassignable
instances – and everyone except the author was rather puzzled as to why the word had been included
in the dataset.
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All-words In the all-words approach, where all the content words in a text, or set of
sentences, are used for evaluation, we encounter a different problem. As budgets do not
support enormous sense-tagging exercises, for most words,not very many instances will
be tagged. For most core vocabulary items,n will be low. SEMCOR contains only 220 words
with frequency greater than 50. So we will not encounter the problem of the commonest
proportion averaging over 90%, simply because samples are so small.

In neither case does the evaluation scenario reflect the scenario of an NLP system in use,
with large throughputs of text.

The paper implies that the case that WSD can outperform the baseline has not properly
been made, with results from SENSEVAL being biased and not properly addressing questions
of lexical sample selection, or scale.

4.3 Identifying the commonest sense in a domain/corpus

The model suggests that the baseline performs remarkably well. But the baseline needs to
know what the commonest sense is. A system that concentrateson identifying the commonest
sense could well outperform one that concentrates on disambiguation.

The observation has been widely used in commercial Machine Translation (MT). While
WSD (called Lexical Disambiguation in the MT community) is acentral problem for MT, it is
sidestepped, by using different lexicons for different domains, more often than it is addressed.
While this approach may have been born of pragmatism rather than theory, the model in this
paper tends to support it. If an NLP application is operatingwithin a domain, it is cleverer to
customise the lexicon for the domain (thereby reducing ambiguity) than to attempt to resolve
ambiguity.

Within the NLP WSD community, similar effects have been observed. Gale et al. [5] note
in a footnote

It is common to use very small contexts (e.g., 5-words) basedon the observation that
people seem to be able to disambiguate word-senses basd on very little context. We
have taken a different approach. Since we have been able to find useful information
out to 100 words (and measurable information out to 10,000 words), we feel we
might as well make use of much larger contexts.

In looking at a very large window, they approximate an approach which identifies a
domain. Recent work by McCarthy et al. [14] has taken this strategy a step further, exploring
in detail how different word senses are commonest in different domains, and how NLP
application performance can be improved by using this information.

The structure of the SENSEVAL exercise, for SENSEVALs 1, 2 and 3, has not allowed
systems to take this approach. At most a few sentences of context have been provided for
each test example. There has not been any possibility of using very large contexts, and the
opportunities for finding, for example, sets of ducuments sharing a domain with the sample
instance (as in topic vector methods [1]) have scarcely beenpossible.

It is a commonplace that the words (and senses) we use depend on the sorts of things
we are talking about, and that different word senses apply indifferent domains. The model
presented in this paper suggests that finding which sense of aword is commonest (in a given
corpus or subcorpus or document set) may reap great rewards,and that future SENSEVALs
should find a way of crediting systems that take this approach.
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