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Abstract. Most phenomena in natural languages are distributed in ac-
cordance with Zipf’s law, so many words, phrases and other items occur
rarely and we need very large corpora to provide evidence about them.
Previous work shows that it is possible to create very large (multi-billion
word) corpora from the web. The usability of such corpora is often lim-
ited by duplicate contents and a lack of efficient query tools.
This paper describes BiWeC, a Big Web Corpus of English texts currently
comprising 5.5b words fully processed, and with a target size of 20b. We
present a method for detecting near-duplicate text documents in multi-
billion-word text collections and describe how one corpus query tool, the
Sketch Engine, has been re-engineered to efficiently encode, process and
query such corpora on low-cost hardware.

1 Introduction

There’s no data like more data, and one place to get more data almost without
limit (for general English and some other languages and varieties) is the web.
One way to use the web is to create a local corpus by downloading web pages:
in [1] we argue that it is the optimal way to use the web for linguistic research. A
number of corpora have been built in this way: Baroni and colleagues developed
web corpora with nearly 2 billion words for German, Italian and English [2, 3]
and have made them available for research as tar archives. Liu at al. [4] describe
the creation of a 10 billion word corpus. In this paper we introduce BiWeC, a
Big Web Corpus currently of 5.5b words, with a target size of 20b.

Very large corpora can be created on low cost hardware in a few person-
months. Most of the steps have linear complexity and scale up well. The two
outstanding issues we focus on in this paper are:

1. removing duplicate content
2. efficient querying.

The article is organized as follows. In section two our motivation for creating
larger corpora is discussed and the advantages of using more data for various
tasks is explained. Section three describes the process of creating BiWeC, with
a focus on removing duplicate and near-duplicate documents. Section four deals
with corpus processing and querying using the Sketch Engine corpus manager.
Then we present some figures about BiWeC and outline future plans.



2 Motivation

Bigger corpora provide more information. To illustrate why a BNC3-sized corpus
is often not enough we take a sample of headwords from one page of Macmillan
English Dictionary [5] and compare their frequencies in the 50,000 word Suzanne
corpus, the 100m word BNC, and BiWeC (Big Web Corpus), our new web corpus
containing 5.5 billion words of general English.

Table 1. Word frequencies comparison for Susanne, BNC and BiWeC

Susanne BNC BiWeC BiWeC/BNC

Size [m words] 0.15 111 5,500 49×
heavy (adj) 11 9,089 252,305 27×
hector (v) 0 37 956 25×
hedge (n) 0 1,525 19,526 12×
hedonism (n) 1 63 1,757 27×
heebie-jeebies 0 0 151 -

Corpora like Susanne are not usable for lexical knowledge, BNC is good for
high frequency words but scarcely provides enough information to make informed
generalisations on hector (verb) and certainly does not for heebie-jeebies. BiWeC
provides ample evidence in both cases. The issue is more acute still for phrasal
and collocational items.

One common role for corpora is exploration of variation in language, ac-
cording to, for example, genre, domain or region, or over time. To support such
studies, a corpus should be big enough to have subcorpora where the expected
frequency for the item being studied is at least thirty or forty. Here, the BNC is
often too small. Consider domain: the written part of the BNC can be divided
into ten broad domains, with subcorpus sizes between three and nineteen mil-
lion words. So a word like hedonism has an expected frequency of just two in
the smallest of these subcorpora, and there is not enough data in the BNC to
support a study of the use of the word across domains.

As we make more and more use of corpora, so the merits of having ample
data even for non-core phenomena are more and more evident. In recent work
we have developed GDEX, a “good dictionary example extractor” [6]. We aim to
find good candidate sentences to be used to exemplify collocations in dictionaries
and language teaching. So, we gather all the example sentences in the corpus for a
given collocation, reject those that have undesirable features (such as non-words,
‘bad’ words, many long words, excessive punctuation, or where the sentences are
long) and choose the most desirable of the remainder (preferring sentences that
are short, contain common words, appear to have standard grammar and contain
other words typical of the settings in which the collocation is found). If there
3 British National Corpus, see http://natcorp.ox.ac.uk/, comprising 100m words.



was a set of 100 sentences to start with, we are likely to find a good candidate
for a dictionary or teaching example. If we only had five sentences to start with,
we are unlikely to.

2.1 Relations with Google

One response to the argument for size above is “why not, then, use the web via
Google”. This is an entirely pertinent response: Google is a spectacularly fast
query engine looking at a spectacularly large corpus. For Google, the ‘local cor-
pus’ is as much of the web as it has succeeded in indexing. (It would like to index
the whole web, but in the course of its crawling it does not find everything. It
probably finds a greater proportion of everything than any of its competitors: for
a review of these issues and discussion on index sizes see [7].) Google, Yahoo and
other web search engines share many of the concerns of linguistic corpus devel-
opers and corpus tool developers. They want large corpora, with wide coverage,
with duplication intelligently handled and with spam weeded out. They want to
index on terms in the content of the page rather than in navigation bars and
advertisements. ‘Text-heavy’ pages and pages that have lots of readers are or
highest value to them. They would like to operate (by default) on lemmas; word
class information would be useful to them. While the goals are distinct, since
search engines help people find out about things whereas corpus research looks
at the language denoting the things, the route to those goals is often shared.

The Google-indexed web is far larger than any corpus developed for linguists:
in Table 2 we repeat Table 1 with Google counts added.

Table 2. Comparing corpus frequencies with the web via Google. Note that: Google hit
counts are for document counts not word counts; they are for word forms not lemmas
and are not word-class-specific; and they can vary from one hour or day to the next.
The searches were undertaken with default settings except that the language was set
to English and ‘allintext’ was set so that the search term had to be in the text rather
than, for example, in a link. The differences in what is being counted probably account
for the high ratio for hector, which often occurs as a name.

Susanne BNC BiWeC BiWeC/BNC Google Google/BiWeC

Size [tokens] .15m 111m 5 500m 49×
heavy (adj) 11 9 089 252 305 27× 242.0m 955×
hector (v) 0 37 956 25× 22.1m 23,000×
hedge (n) 0 1 525 19 526 12× 25.8m 1,321×
hedonism (n) 1 63 1 757 27× 2.4m 1,343×
heebie-jeebies 0 0 151 - 20,900 138×

A cluster of researchers have used Google and other search engines in this
way, see e.g. [8]. The great benefit is the size. Where the phenomena under
investigation are too rare to have a reasonable number of hits in 5.5b words



of English, this is currently the only course available. But there are costs and
problems relating to the strategy [1]:

– the query language is limited
– no searching for lemmas or by word class or other linguistic parameters
– search hits are ordered in a very specific manner which is not relevant to

linguistic research and cannot (in Google) be turned off
– searches are limited: over-users of Google may have their access blocked, and

also a maximum of 1000 hits are given per query
– methods are not published
– Google may change methods and the query language, without saying they

are doing so or offering any explanation how or why, at any point.

For these reasons, wherever the corpus is big enough to provide enough data
to support the research question, we advocate the use of a corpus prepared
using the methods described here and loaded into a query tool specialised for
linguistic research. So – the bigger the corpus, the more research questions can
be addressed without recourse to Google or other commercial search engines,
with all the associated disadvantages.

3 Building BiWeC

3.1 Crawling

We retrieve textual data from the web using procedures similar to [2, 3]. We
used the Heritrix web crawler developed by the Internet Archive4 and started
the crawl from the same list of URLs as Ferraresi et al.5 The crawl was restricted
to domains considered likely to contain English texts, such as .uk or .au. For
practical reasons we only processed HTML pages (content-type: text/html).
We also applied restrictions to the size of the processed documents and filtered
out all web pages smaller than 5 kB or larger than 2 MB. The rationale is that
pages smaller than 5 kB contain little if any textual content and pages larger than
2 MB are usually not what we want but are logfiles, lists, catalogues or similar.
Unlike Ferraresi et al. we configured the web crawler to perform this basic filter-
ing for us rather than storing all crawled data and filtering as a postprocessing
step, so reducing bandwidth requirements and disk space.

3.2 Cleaning

‘Cleaning’ the retrieved web pages involves stripping out the HTML mark-up and
removing content such as navigation links, copyright notices, advertisements, etc.
To perform this step we considered the participating systems in the CleanEval

4 http://www.archive.org/
5 We would like to thank the ukWaC corpus team for providing us with the list of

seed URLs.



competition for cleaning webpages [9]. However, our experiments revealed that
even the winning system of CleanEval is matched by the BTE algorithm [10].6

BTE works from the observation that the material we wish to remove is
usually rich in markup. It establishes the ratio of text to markup for different
chunks of the page. The ratio is most often high at the beginning and end of the
page and lower in the middle. BTE retains only that part of the page where the
ratio is low.

3.3 Character encoding conversion

To unify the character encoding of the corpus contents we converted all down-
loaded pages to UTF-8. As long as we only processed HTML pages, we were able
to determine the original character encoding from the HTML headers. We are
well aware that the header information is not always reliable and that techniques
exist for guessing the character encoding from textual contents of a web page.
However, for English, occasional errors in character encoding conversion do not
cause problems. Therefore we considered using any advanced encoding detection
techniques unnecessary.

3.4 Language detection

Language detection was performed to filter out non-English documents which
occasionally occur in the crawled domains. The problem of language detection
has been well described in the literature (e.g. [11]) and many freely available
language detection systems exist. Having the postprocessing procedure fully im-
plemented in Python, we chose the Trigram class7 which performs the language
identification based on frequencies of triples of characters. As a by-product of
the language detection, noisy texts were also filtered out, such as documents full
of JavaScripts which the cleaning phase failed to remove.

3.5 Removing duplicate and near-duplicate documents

Duplicate documents in text corpora do damage to corpus derived statistics.
Much corpus use is based around identifying patterns which are much more
common that one would expect by chance. For example, collocation studies
are premised on a word and its collocate appearing together remarkably often.
Collocation-finders are repetition-spotters. If a corpus contains many duplicate
texts, then supposed collocation lists will often have contents that result, not
from a bona fide collocation, but from the duplication. Because much corpus
research is regularity-spotting, it is easily derailed by the regularities provided
by duplication. Duplicate concordance lines are also an irritant, and potentially

6 BTE achieved a score of 85.41 on the CleanEval test set in the text-only cleaning
task, while the CleanEval winner (Victor) scored 84.07.

7 http://code.activestate.com/recipes/326576/



misleading, in the manual exploration of corpora. For a high-quality corpus,
removing duplicates is essential.

Identical web pages can be easily detected by comparing their checksums.
This, however, does not work for near-duplicate web pages as even a small change
to the contents changes the checksum.

Liu and Curran [4] describe how they created a 10 billion words corpus but
do not discuss duplication. Ferraresi et al. [3] removed near-duplicate documents
from the ukWaC corpus using a technique based on Broder’s fingerprinting al-
gorithm [12]. This method works well only for very similar documents but does
not detect documents which contain both significant identical parts and differ-
ent parts. This is illustrated in Fig 1. We have analysed ukWaC to establish the
duplication it retains, and while it does not include many 100 % duplicates, it
does contain large numbers of partial duplicates. Of a total of 2.58m documents,
28,716 have 100 % duplicate content, but 85,693 have at least 80 % duplicate
content.
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Fig. 1. Duplicate and near-duplicate documents in the ukWaC corpus

Many variations of fingerprinting algorithms for near-duplicate documents
exist. These are mostly based on finding shared sequences of words among doc-
uments. To make the process feasible for very large data, only small samples of
each document are used. This, however, constitutes a loss of data which means
that only very close documents are identified, such as a regular web page and
a version of it for printing. The technique is commonly used by search engines



for grouping near-duplicates but is not so suitable for us since it lets through a
substantial amount of duplicate text.

In our previous work [13] we developed a new algorithm for detecting dupli-
cated text, and this is what we have applied in the building of BiWeC. It works
as follows.

Let us assume that undesirable duplication occurs wherever a string of n
or more words is duplicated (we have used n = 10). An exhaustive method of
duplicate detection would work with all 10-word strings in the corpus. This is
prohibitive for large corpora, but we can reason that we do not need to work
with all of them. We only need to find the duplicate 10-word strings.

The core idea of our algorithm is to use an external sort method to generate
all n-grams together with their counts directly, in one step (as opposed to the
SPEX algorithm [14] which iterates through 3-grams, 4-grams, ... n-grams, re-
moving non-duplicated items at each stage: our earlier paper shows that SPEX
does not scale well). The program splits the input text into chunks which fit into
a fixed amount of memory. For each chunk, a sorted list of n-grams is generated
and saved to a temporary file on disk. The final phase joins all temporary files
and outputs any n-gram with total count higher than one. This is a typical ex-
ternal sort method which would require a huge amount of disk space and a lot
of runs (chunks) to process the whole input text.

Having the list of duplicate 10-grams available, we can easily determine the
amount of duplicated data in each document. This allows us to explore the
tradeoff between partial-duplicate-removal and corpus size. We may choose to
remove all documents with over 10 % of data duplicated, or over 50 %, or over
90 %. The optimal figure will depend on the sensitivity of the applications and
users to duplication, versus the demand for a large corpus. For BiWeC, after
some experimentation, we have used a threshold of 50 %. The size of BiWeC
before and after de-duplication is shown in Table 3.

Table 3. BiWeC size before and after removing duplicate content

before deduplication after deduplication

number of documents ≈ 9 mil. 4.3 mil.
number of tokens 9 bil. 5.5 bil.
number of different word forms 36 mil. 28 mil.
number of different lemmas 32 mil. 27 mil.

The algorithm does not give rise to a database which can be used to ask,
of a new document, does it duplicate material already in the corpus, so is not
suitable where a corpus is frequently to be added to. Such a database is provided
by fingerprinting algorithms such as Broder’s.

In the paper cited above we demonstrate that the algorithm scales well to
billions of words. Also the de-duplication was a one-off exercise: if the corpus is
regularly to be added to, we shall revisit suitable methods.



3.6 Corpus Annotation

For tagging the corpus we have used TreeTagger [15], a widely-used state-of-
the-art part-of-speech tagger based on decision trees. For English, it lemmatizes
as well as POS-tags. We have used it with the English tagset and parameters
as distributed, and have not re-trained it. We have good experiences of its per-
formance and results over the past seven years: the accuracy has proved to be
adequate for many corpus based tasks such as building word sketches [16, 17]
and distributional thesauruses. In addition, the TreeTagger is fast, processing
about one million words per minute on a single machine: sufficient even for a
corpus with several billion words.

4 Query Engines for multi-billion-word corpora

Many interesting linguistic results can be computed by simple batch processing
of the whole corpus. They include word list and bigram (or n-gram) lists with
frequencies, collocation lists for a particular word or lemma, lists of words or
lemmas which are particularly salient in a particular subcorpus (‘keywords’)
and lists of words particularly associated with a grammatical construction or
pattern, such as “nouns with a strong tendency to occur in the plural” [18].

Studying such lists, linguists usually find data which are surprising and need
some explanation. This is best done by browsing concordances. Users need to be
able to query the corpus interactively as well as in batch mode. This demands
fast query evaluation.

Most current computers use 32-bit numbers and even on 64-bit machines
the default numeric type in many programming languages is 32-bit only. The
maximum number for a signed 32-bit numeric type is 23̂1, which is slightly
more than 2 billion: the computer cannot (readily) count higher than 2 billion.
Many off-the-shelf algorithms use the default numeric type and are not prepared
for more than 2 billion items. For example, advanced implementations of data
processing systems often use memory-mapping, which enables mapping of data
in files to main memory addresses without a long sequential read of the whole
data file. The operating system is responsible for reading the respective data
block from files to the main memory. This feature can greatly improve the speed
of a program and also simplify the implementation. However 32-bit machines
cannot memory-map more than 2 GB of data.

While the revision of the code to use 64-bit numbers at all points is not
intrinsically a hard technical challenge, there are many fixes that need to be
made to cover the code of the whole system.

We have recently re-engineered the Manatee corpus query engine so that it
can handle corpora of over 2 billion words [19].8

8 Manatee is incorporated in a few derived products; it is the core engine of the Sketch
Engine [17].



4.1 Corpus Encoding

In Manatee, the binary files holding the encoded and indexed corpus are roughly
the same size as the input plain or annotated text in Manatee’s one-word-per-
line input format. Each variety of annotation (e.g., wordform, lemma, POS-
tag, sentence-markup) increases the size of the input data and the size of the
encoded data in similar ways. The same amount of disk space again is needed for
temporary storage during the encoding process. Data sizes are shown in Table 4.

Table 4. BiWeC data sizes (after removing duplicates)

downloaded data size ≈ 1 TB
cleaned data in vertical format (POS-tagged, lemmatised) 72 GB
encoded data 69 GB

The total encoding time depends not only on the number of words in the
corpus but also on the amount of annotation.

The first stage of encoding on a standard server take about 10 hours per
billion tokens. Encoding of 9.5 billion token corpus ran for four days on a 2 GHz
AMD Opteron machine with 2 GB of memory dedicated to the encoding process.

After this stage, the corpus can be queried for concordances, concordance-
based functions including frequency distributions, collocations and concordance
sorting, and word lists. Additional indexes can be computed to speed up some
type of queries (for example ignoring upper and lower case of lemmas). Com-
putation time for such indexes depends on the size of the lexicon, that is, the
number of different words in the corpus.

An encoded corpus can be used by users to create concordances and word
lists. A powerful query language can be used for queries. We are using the Sketch
Engine to build word sketches (one-page, automatic, corpus-derived summary of
a word’s grammatical and collocational behavior [17]). The usefulness of such
information depends on how many instances of grammatical relations we find in
the corpus for the given word.

For the BNC there are 7,414 words for which more than 1000 grammatical
relation instances were found. In the current fully-processed version of BiWeC,
comprising 5.5b tokens, there are 76,689 such words. We have ten times as many
words for which we can generate a detailed and thorough account of the word’s
behavior.

Table 5. BiWeC processing times

computing word sketches 16 hours
computing thesaurus 40 minutes



Table 6. The number of lemmas for which rich, data-driven analyses are available
in each of three corpora. The analyses are built on the evidence of the grammatical
relations (gramrels) that a word occurs in, and the other words it occurs with. At least
one hundred, and preferably several hundred instances are required for a good word
sketch.

gramrel hits >100 >1000

BNC (100m) 29,931 7,414
ukWaC (1,500m) 74,293 21,614
BiWeC (5,500m) 335,294 76,689

5 Conclusions and future work

We are able to build multi-billion word corpora which are suitable for linguistic
research, and we have tools which can encode and query them efficiently. We
have introduced one such corpus, BiWeC, a corpus of general English, currently
of 5.5 billion words fully prepared and accessible in our tools (Manatee and the
Sketch Engine) and with a target size of 20 billion words.

We have a long agenda for further developments to both the corpus and the
tool. Our highest priority for the tool is to address hardware limitations relating
to disk access speed. We shall be exploring Amazon’s ‘cloud computing’ which
is rumored to offer very fast disk access. In relation to the corpus, in addition
to gathering more data, we wish to classify documents using text classification
methods along a number of dimensions including at least domain, formality
and region. In a companion paper [20] we describe a parallel stream of work
in which we are developing a 100m word “New Model Corpus”, half of which
is taken from BiWeC (with data-driven classification) and the other half taken
from web sources which we know to be fiction, or chatshow transcripts, or film
transcripts, so we have a corpus which, like the BNC and before it LOB and
Brown, supports a variety of studies across language varieties. We also want to
explore additional textual markup, including for named entities, time phrases,
and semantic categories of nouns: we plan to do this in an open, collaborative
model, working with other groups who have tools and expertise in these forms
of annotation. The New Model Corpus will be made freely available for research
purposes. Our plan is that the two streams should merge, to give a multi-billion
word corpus with many interesting and still very large subcorpora and rich
textual markup.
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